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Az=z'—-z from Table II. (Note that z and z' are
actually calculated from different self-consistent
charge densities.) The first term gives 6V ()
=0.0619 Ry. The second term is small because
the sign of p(G) and cosGr is different for different
G’s and in fact the sign of the second term is

positive when the old charge density is used and
negative when the new charge density is used.
Because from this estimate 6V is positive, we ex-
pect the one-electron energies of the new calcula-
tion to be higher than those of the old calculation
as Table I confirms.
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The lattice spacings and compressibilities of the nontransition-elemental solids are calcu-
lated using Ashcroft pseudopotentials to describe the cores and the von Weizsacker method to
describe the valence electrons. The observed correlations of these quantities with the Pauling

radii and the valencies are thereby obtained.

1. INTRODUCTION

The success of the pseudopotential method in the
theory of metals is now established'? and it would
appear to be an appropriate time to investigate
whether the method might be adapted to other sys-
tems. We have in mind, in particular, applica-
tions to molecular chemistry, a suggestion which
has also been made by Harrison.? The aspect of
the standard pseudopotential technique for metals
which cannot be taken over into other problems
is the method of linear dielectric screening by the
valence electrons, which depends on there being a
zeroth-order description in terms of plane waves.

In an earlier paper? it was suggested that a
Thomas-Fermi (TF) type of description of the va-
lence electrons might be a suitable alternative.
Indeed, conversely, the pseudopotential description
might be regarded as offering further scope for
the extension of TF-like methods which often ex-
perience difficulties in the very regions, the cores,
which are eliminated on using pseudopotentials.

It is well-known, however, that the TF method
alone cannot produce a stable lattice. For this
reason, we now generalize the previous work and
show that a generalized TF method, namely, the
Thomas-Fermi-Dirac-von Weizsacker (TFDW)

description will give accurate interatomic spac-
ings and compressibilities. In fact, it is prob-
ably fair to say that the average accuracy achieved
is higher than in any other calculation of pseudo-
potential type. 3™’

II. GENERAL THEORY

In this work we will be interested in describing
the total energy E of the system as a functional
of the particle density »n(¥), the fundamental status
of this viewpoint having been discussed by Kohn
and coworkers.®® Let us write

E:ff(n)d'r—éeanedT+U” s (2.1)

where e =le| is the size of the electronic charge,

-7
Ve =—ef“‘-'—r—z(r -2 dT'
Ir-7r|

is the electrostatic potential resulting from the
electron distribution, and U;; represents the
Coulombic ion-ion contribution. Specific forms
will be taken for f later. The Euler equation for
(2.1) reads

of

2 =eV,-V)=0 ,

(2.2)

(2.3)

where V, is a Lagrange multiplier arising from
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the normalization requirement

fndr:N , (2.4)

where N is the total number of particles.

Equation (2. 3) is derived, in the usual way, for
variations in #(¥) but for fixed boundaries. Now,
however, let us change the volume of the solid
from @ to 2 +682. Then the corresponding change
in E is

1o}
8E =[f(n) - 3enV,], +f{-6—]%—eve}6nd-r+6U” R

(2.5)

where the suffix b denotes evaluation at the boundary

(which in the spherical approximation we will use

later is the surface of each Wigner-Seitz sphere).
This equation can be simplified on using (2. 4)

to write

6 [ndr=[ondr+[n],62=0 (2.6)

and noting from (2. 3) that (6f/6n) —eV, is a con-
stant. In this way, we obtain a pressure

R ]
TTaa [n 6n—f b
the ion-ion contribution cancelling against an elec-
tron-electron electrostatic term by a theorem due
to Feynman, 1

We now take the special case

Cw (V)2
f:ckn5/s+Tw ( n)

2.7

—cantP-envy , (2.8)
where ¢, =3(3m)?/%2/m, c,=1%/2m, and c,
=3(3/m!/%?. The terms represent, respectively,
the usual TF term, the von Weizsacker inhomogene-
ity contribution, the Dirac exchange energy density,
and the electron-ion contribution. The basic fea-
tures of these terms have been known for a long
time (see, for example, March!!) but two new de-
velopments, on which we rely, should be mentioned.

First, we will choose Vj to be a pseudopotential
and, specifically, we choose the empty core
form?+212

0, V<7,

Va=LoyE-R) , vx0r)= (2.9)
R

ze

, >,
where 7, is an ionic radius. [Note that in (2.9), as
in (2. 2), we follow the usual practice in statistical
theories by using electrostatic potentials. The
definition is thus minus the usual electron-ion form
used in pseudopotential theory. |

Second, the role of the von Weizsacker term has
recently been clarified. For slowly varying per-
turbations, there is a leading order correction to
the TF term which is of von Weizsacker form but
with only one-ninth the original coefficient.'® How-
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ever, for rapid (though still small-amplitude)
variations, !* the leading order correction is pre-
cisely the original von Weizsacker term. In fact,
direct calculation'® shows that the two formulations
become asymptotically exact for weakly perturbed
systems at long and short wavelengths, respectively,
and the only appropriate coefficient for the present
problem (where the higher reciprocal-lattice
vectors play an important role in inverse space)
is the original one.

Proceeding, therefore, with (2.8), one can re-
write (2. 3) as

Fenn? P ¢, (V2 ~fe g P~ ev=0
(2.10)

where v=Vy +V, — V; and ‘satisfies the Poisson
equation

(2.11)

These coupled equations are to be solved subject

to the conditions that the only discontinuities in v

and Vv are at the ionic radii, where they are the

same as those of (2.9), and that Vz and Vv vanish

at the ionic centers R and at the boundary.
Similarly, (2.7) and (2. 8) give

V2 =4me.

p=[dcen®’® =3¢,V - tc ', , (2.12)
which on using (2. 10) simplifies to
p=[env —c,n®'®+ec,nt’?, (2.13)

Technically this is an important result since it
enables us to reduce the number of adjustable
parameters at our disposal at the beginning of the
calculation [see after (3.4) below].

III. NUMERICAL PROCEDURE

We know confine ourselves to one Wigner-Seitz
cell and replace it by a sphere of equal volume;
let the radius of the latter at pressure p be 7,.
Then (2. 10) yields

c

dz 1/2 5 7/6
-7“’;1-172 (rn'’?) +3cn™/ -

e’ /8 —em’?=0 ,

(3.1)

an effective Schrédinger equation for »n'/? (Ref. 16),
and (2. 11) becomes

1 dz _ (3 2)
poll (rv) =4 me
The boundary conditions now take the form
v@,+0)—v(r,-0)=ze/7, ,
’ ’
v e+ 0)=0'(r, -0)==ze/7%
¢ ¢ ° (3.3)

7' (0)=2'(0)=0 ,

n'(r,) =2 (r,) =0,



while (2. 13) shows the pressure to be
p=nlr,)evlr,) = c,n®’® (r,) +cont’® ()] . (3.4)

For a specified core radius 7,, valency z, and
pressure p, the procedure was as follows. First,
some arbitrary trial value of 7, is taken. Then,
for a guessed n(r,), the corresponding v(r,) is
given by (3.4). . With these values and the knowl-
edge [see (3.3)] that #’ (+,) and ¢’ (r,) are zero,
(3.1) and (3. 2) are integrated inwards until the
origin is reached. In general, » (0) and »" (0)

0'4F

Cs
(theory)

0.3 Cs (expt.)

e
N

Fractional volume decrease
=)
=
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0.4 40.004 m
" 2
g FIG. 1. Crystal potential and valence
3 electron density for pressure p=0, valence
§' z=1, and core radius 7»,=1.67a.u. This
0.2} 10.0022, corresponds to the Ashcroft (Ref, 12)
< characterization of Na, The crystal po-
v i tential is very close to that obtained by the
?c’ TF method (Fig. 3 of Ref. 4) though, of
3 -~ course, there the cell radius was assumed
& o 1 2 3 0 to be given, whereas here it is predicted
> r@a.u) (to be 3.8 a.u.) by the calculation. Sub-
2 sequently, for the sake of uniformity, we
§ will characterize each element by its
4 Pauling radius. In the case of Na, this is
%-0.2} 1.79 a.u. The difference between the
§ SODIUM Ashcroft and Pauling radii matters very
S little to graphical accuracy as Figs. 4 and
5 show.
-0.4 r___’__________,_’._

will be nonzero [contrary to (3. 3)] but by adjusting
the guessed n(r), appropriately one of these quan-
tities, say 7’ (0), can be made to vanish. Then the
trial 7, is varied and the process repeated until
not only #'(0) but also v’ (0) is zero. The problem
for given 7., 2z, and p is thus solved and a typical
solution is shown in Fig. 1.

IV. RESULTS AND COMPARISON WITH EXPERIMENT

For given 7, and 2, the lattice parameter can be
calculated as a function of pressure. Results ob-

FIG, 2. Pressure-volume curves
for cases with Pauling radii approp-
riate to Na and Cs., The experimental
data are due to Bridgman (Ref. 17).
Na (expt.) The initial slopes lead to the bulk
moduli (Figs. 8 and 5). The absolute
theoretical specific volumes agree
with the corresponding experimental
data, as Fig. 4 testifies.

Na (theory)

Pressure (kbar)
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FIG. 3. Bulk moduli K versus Wigner-Seitz radii ».
The curves are computed in our final TFDW approxima-
tion and are valence dependent. The experimental points
are designated by the appropriate chemical symbols, the
valencies being given in parentheses.

tained in this way are shown in Fig. 2. The bulk
moduli, K =~ Qdp/dQ, are given by the initial
slopes of such curves and thus we may eliminate
the auxiliary parameter 7. and plot K vs 7, the
Wigner-8eitz sphere radius at zero pressure.
The results are shown in Fig. 3 along with the
experimental data.

A plot of the latter, of course, indicates the
extent of what we can ever hope to achieve by a
two-parameter (v, and z) model. The alkalis lie
on a smooth curve which is well described by the
theory. (The noble metals, incidentally, are not
plotted and do not lie on the curve; the reason
for this, d banding, is understood.'™® The di-
valents also yield a well-defined line and our
theory reproduces this quite well. There is quite
a lot of scatter on the points for the elements of
higher valency. The theory produces average
curves which are less satisfactory than for the
lower-valency cases but the definite trend is ob-
served, both experimentally and theoretically, of
decreased compressibility as the valency is in-
creased.

While they are not directly observed, the inter-
mediate parameters ¥, are of considerable inter-
est. In pseudopotential perturbation theory these
are found by fitting experimental results, and
tables of such values are available. '? It seems?
that a good value obtained in this way correlates
well with the Pauling radius. ® Thus, since we con-
sider some elements for which »./’s are not other-
wise available, we will uniformly identity », with
the Pauling radius in every case. In this way
(Figs. 4 and 5) we may compare our 7,(»,) and
K(r,) curves with experiment.

The first thing to note about Fig. 4 is that the
theoretical 7(-vs-7, relationship turns out to be
valence independent and linear over the physical
range. This is in contrast with the TFD results
(with von Weizsacker term omitted) which were
also calculated. The experimental results support
the idea of a valence-independent line and the
theoretical result we obtain is almost as good as
any that could be drawn through the experimental
data. Because of the simplicity of this relation-
ship, Fig. 5 is a recognizable distortion of Fig. 3

or
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FIG. 4. Wigner-Seitz radii », vs Pauling radii »,. The
TFD curves are valence (z) dependent and do not corre-
spond to experiment. The single TFDW curve is valence
independent and provides a good average description of
experiment. The experimental points are designated by
the appropriate chemical symbols, the valencies being
given in parentheses.
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FIG. 5. Bulk moduli K vs Pauling radii »,. The curves
are computed in TFDW approximation and the experimental
points are designated by the appropriate chemical symbols,
the valencies being given in parentheses.

and about the same degree of success is obtained
when comparison is made with the experiment.

It will be noted that some elements, which appear
to be quite normal from Fig. 3, present difficulties
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on the basis of Figs. 4 and 5. In fact, to assign
core values consistent with those employed in
standard pseudopotential perturbation theory would
improve the situation in some cases and worsen it
in others. In other words, the results displayed
perhaps typify the kind of overall agreement we can
expect, from the present model, on the basis of any
one method of allocating core radii.

V. CONCLUSIONS

The present method is able to account for the
main features of the observed pressure-volume
relationship of the elemental solids having valencies
between one and four. It also seems possible that
if the more obvious improvements were made (the

‘use of more sophisticated pseudopotentials and the

elimination of the sphere approximation) the pres-
ent results would be improved and other elements
could also be described.

Though the results, taken as a whole, are at least
as good as any yet obtained from first.principles,
it is the particular technique of combining the
pseudopotential concept with a TF-like description
of the valence electrons to which we attach impor-
tance. For the latter type of technique is useful
in problems (for example, molecules) where the
more usual linear dielectric screening method is
not available. Applications in such areas would
now appear to be desirable and potentially fruit-
ful.
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